

# 9.2 to 10.5GHz - 22dB - 22dBm Medium Power Amplifier MMIC

DATA SHEET VWA 5000066 AC

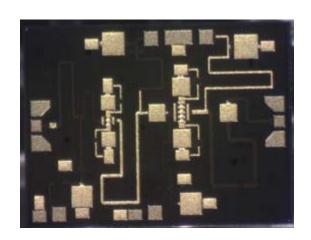
## **General Description**

The **VWA5000066AC** is a 2 stages analog medium power MMIC amplifier operating in the frequency range 9.2 to 10.5GHz.

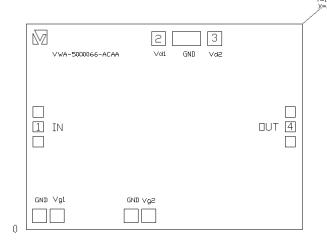
The device is a cascaded 2 stages auto biased amplifier designed in 0.25µm pHEMT process.

The device is capable of more than +23dBm output power at Psat, and provide more than 22dB of gain from 9.2 to 10.5GHz with less than 1dB of Gain variation.

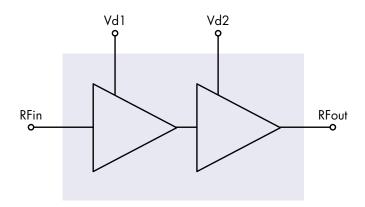
The Design has been optimized to provide high efficiency, supply current is as low as 120mA with VD=+8V, when delivering +23dBm output power.


S2P file can be provided for system design simulation. DXF file is also available for mechanical design.

#### **Features**


- 2 stages Medium Power pHEMT GaAs MMIC
- Single Bias, Low power consumption < 1W
- Bandwidth: 9.2 to 10.5GHz
- High Output Psat: +23dBm
- High P1dB: + 22dBm
- High gain: 22dB
- $50\Omega$ , AC coupled RF input and output,
- Power supply: 120mA @ +8V
   Small size: 2 x 1.5 x 0.10mm

## **Applications**


- X band Medium Power amplifier
- Radar / ECM / ECCM
- Test and measurement
- Broadband communication



# Pin out and dimensions (2.0 X 1.5 X 0.10mm)



# **Functional Block Diagram**



# **Typical Characteristics**

#### Test conditions unless otherwise noted:

• Tamb =  $25^{\circ}$ C

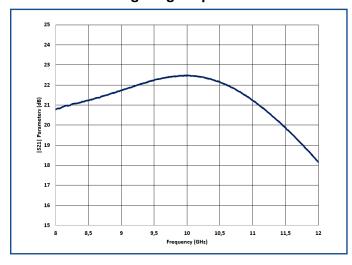
• Vdd = +8V

• Idd = 120mA

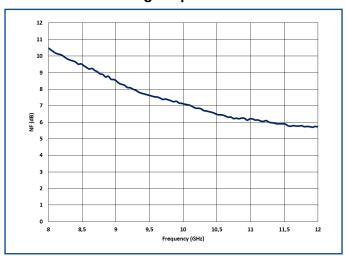
| Symbol | Parameter                      | Min | Тур     | Max  | Unit |
|--------|--------------------------------|-----|---------|------|------|
| F      | Frequency Range @ 3dB          | 9.2 |         | 10.5 | GHz  |
| G      | Gain                           | 22  | 23      |      | dB   |
| ΔG     | Gain flatness                  |     | +/- 0.5 |      | dB   |
| NF     | Noise figure @ 10GHz           |     | 7       |      | dB   |
| S11    | Input return loss              |     | -14     |      | dB   |
| S22    | Output return loss             |     | -14     |      | dB   |
| P1dB   | Output power @ 1dB compression |     | 22      |      | dBm  |
| PSat   | Saturated output power         |     | 23      |      | dBm  |
| Vdd    | Drain supply voltage           |     | 8       |      | V    |
| Idd    | Supply current                 |     | 120     |      | mA   |

| Symbol | Environment Parameters | Min | Max  | Unit |
|--------|------------------------|-----|------|------|
| Tst    | Storage temperature    | -65 | +150 | °C   |
| Тор    | Operating temperature  | -55 | +85  | °C   |

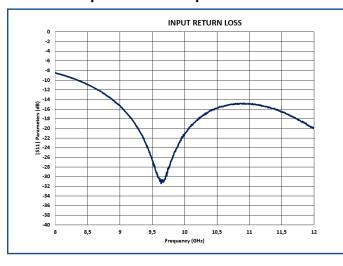
# **Absolute Maximum Ratings**


| Symbol    | Maximum Ratings                       |  | Max | Unit |
|-----------|---------------------------------------|--|-----|------|
| Vdd       | Positive External DC bias voltage     |  | 8.5 | V    |
| Pin max   | RF input power (In)                   |  | +7  | dBm  |
| Tj        | Junction temperature                  |  | 150 | °C   |
| T process | Temperature process max 10 secondes   |  | 290 | °C   |
| Pcw       | Continuous power dissipation (@ 85°C) |  | 1.2 | W    |

Care should be taken to avoid supply transient and over voltage. Over voltage above the maximum specified in absolute maximum rating section may cause permanent damage to the device.

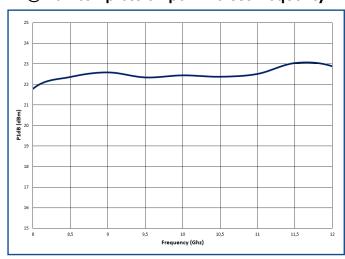

# **RF** "Probe Measurement"

## Typical curves (Vdd=8V)

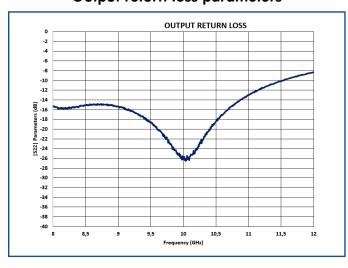

#### Small signal gain parameters



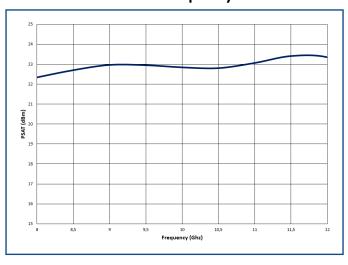
#### **Noise Figure parameters**




Input return loss parameters



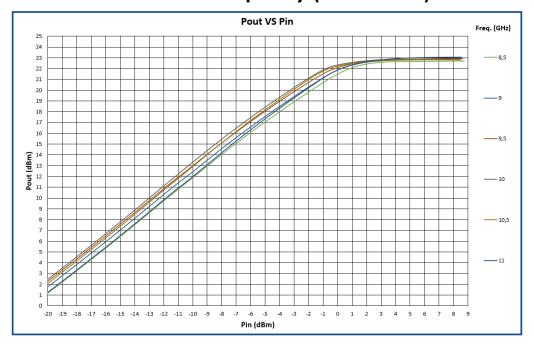

Output power


@ 1dB compression point versus frequency

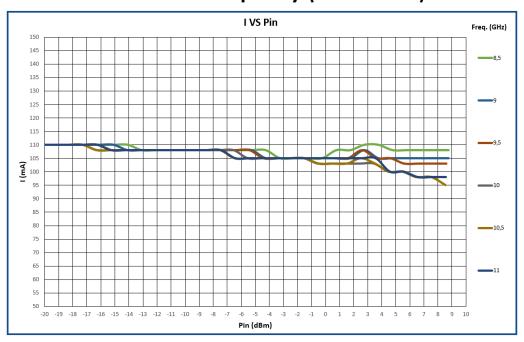


**Output return loss parameters** 

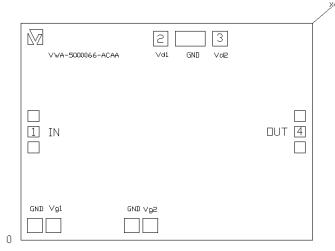



Output saturation power versus frequency




## **RF** "Probe Measurement"

Typical curves (Vdd=8V)


# Output power versus Input power for various frequency (8.5-11GHz)



# Drain current versus Input power for various frequency (8.5-11GHz)

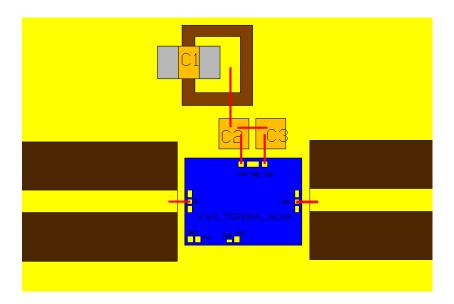


## Pin out and pad description



| Pad | Function | Χ<br>(μm) | Υ<br>(μm) | Size<br>(μm x μm) |
|-----|----------|-----------|-----------|-------------------|
| 1   | RFin     | 82        | 742       | 75 x 75           |
| 2   | Vd1      | 948       | 1370      | 100 x 100         |
| 3   | Vd2      | 1356      | 1370      | 100 x 100         |
| 4   | RFout    | 1880      | 742       | 75 x 75           |

- Die size: 2.0 X 1.5 X 0.10 mm3
- Bias pads dimensions  $(2,3) = 100 \times 100 \, \mu m^2$
- RF in and RF out pad dimensions (1,4) =  $75 \times 75 \, \mu \text{m}^2$
- Die bottom must be connected to ground (RF and DC)


## RF wires and Biasing

This device requires only one bias supply, nominally +8V.

First order decoupling capacitors should be MIM type and placed as close as possible to the die. Typically, a D20, 100pF is recommended for decoupling Drain and Gate accesses (Pins 2, 3).

Second order decoupling capacitor should be a 1µF capacitor (SMD type, size 0402).

The next figure shows a typical mounting configuration:



### First layer capacitors (C2 & C3):

2 x single layer capacitors, value 100pF, close to the die

## Second layer capacitors (C1):

1µF, 0402 size

#### **RFin and RFout:**

2 gold wires (wedge 25µm) Length < 300µm

## **Ordering Information**

| Product Code   | Definition                                                               |
|----------------|--------------------------------------------------------------------------|
| VWA 5000066 AC | 9.2 to 10.5GHz – 22dB – 22dBm<br>Single Bias Medium Power Amplifier MMIC |

## **Associated Material**

| Product Code                                     | Definition      |
|--------------------------------------------------|-----------------|
| Packaged die                                     | Contact factory |
| Die Evaluation Board (die EVB)                   | Contact factory |
| Packaged die Evaluation Board (packaged die EVB) | Contact factory |
| Mechanical files (DXF)                           | Contact factory |
| Measurents files (S2P)                           | Contact factory |

# **Product Compliance Information**

## **Solderability:**

Use only AuSn (80/20) solder and limit exposure to temperature above 300 °C TO 3-4 minutes, maximum

## **ESD Sensitivy Rating:**

Test : Human Body Model (HBM) Standard : JEDEC Standard JESD22-A114



**CAUTION! ESD-Sensitive device** 

### **RoHS-Compliance:**

This part is compliant with EU 2011/65/ EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C15H12Br402) Free
- PFOS Free
- SVHC Free

## **Contact Information**

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about Vectrawave:

#### **Vectrawave SA**

5, rue Louis de Broglie 22 300 Lannion - FRANCE

#### www.vectrawave.com

Email sales: <a href="mailto:contact\_sales@vectrawave.com">contact\_sales@vectrawave.com</a>

Tel sales:+33 (0)2 57 63 00 20

### Represented by .....