

DATA SHEET PRELIMINARY VM174D

General Description

The VM174D is 3 stage Medium-Power Low-Noise amplifier MMIC operating in the frequency range 24 to 30 GHz.

The device has a linear gain of 27 dB and a typical noise figure of 2 dB. Saturated Output RF power is 23 dBm for a biasing current of 120 mA at 4V supply voltage.

It is manufactured with a 100nm pHEMT GaAs process and is especially suited for radar and for telecommunication applications.

Typical Features

Operating frequency range: 24 to 30 GHz

Gain: 27 dB

Noise figure: 2.1 dB

P1dB = 21dBm , Psat= 23dBm

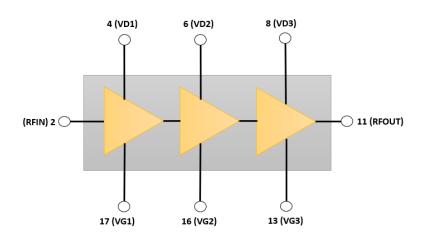
Gain Flatness: +/- 1 dB

Input Return Loss: -10 dB typ.

Output Return Loss: -10 dB typ.

Power supply: 120 mA @ V_D =+4 V,

 $V_G = -0.5V$ typ.


• Die Size: 1.2 x 2.4 x 0.1 (mm)

Applications

- Radar
- Test and Measurement

Telecommunications

Functional Block Diagram and Pin Assignment

Function	Pin Number
RFIN	2
V _{D1}	4
V _{D2}	6
V _{D3}	8
RFOUT	11
V_{G3}	13
V_{G2}	16
V _{G1}	17

VM174D

PRELIMINARY DATA SHEET

Electrical Specifications

Operating conditions unless otherwise noted:

• $V_D = V_{D1} = V_{D2} = V_{D3} = +4V$

• $V_G = V_{G1} = V_{G2} = V_{G3} = -0.5V$

 $I_D = I_{D1} + I_{D2} + I_{D3} = 120 \text{mA}$ Tamb. = 25 ° C

Symbol	Parameter	Min	Тур	Max	Unit
F	Frequency range	24		30	GHz
G	Linear gain		27		dB
P1dB	Output power at 1dB gain compression		21		dBm
Psat	Output saturated power		23		dBm
NF	Noise Figure		2.1		dB
PAE	Power Added Efficiency		28		%
S11	Input Return loss		-10		dB
S22	Output Return loss		-12		dB
V _{D1/2/3}	Operating supply voltage		+4		٧
I _D	Supply current		120		mA
V _{G1/2/3}	Gate voltage	-0.6	-0.5	-0.4	٧

Absolute Maximum Ratings

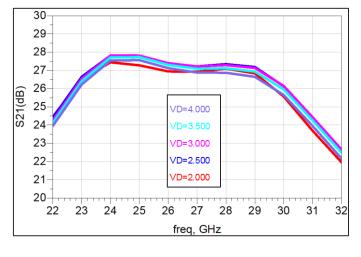
Symbol	Parameter		Max	Unit
V _D	Drain voltage		+8	V
I _D	Supply Current	0	190	mA
V _G	Gate Voltage	-2	0	V
Pin	CW Input Power		+10	dBm
Tst	Storage temperature	-55	+125	°C
Тор	Operating temperature	-40	+85	°C
Tch	Channel temperature		+150	°C

Operation of this device above any of these parameters may cause permanent damage.

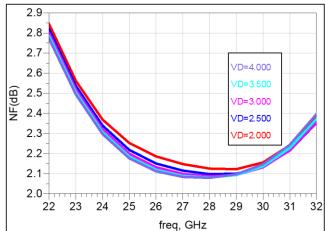
VM174D

PRELIMINARY DATA SHEET

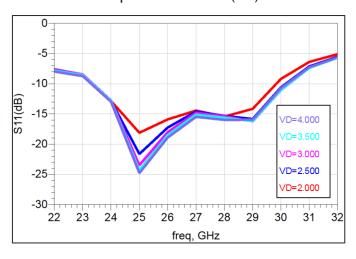
Typical Performance (Post-layout Simulations)

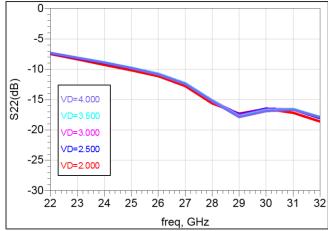

Small signal performances vs Supply Drain Voltage

Operating conditions unless otherwise noted:


- $V_D = V_{D1} = V_{D2} = V_{D3} = +4V$
- $V_G = V_{G1} = V_{G2} = V_{G3} = -0.5V$

- $I_{D} = I_{D1} + I_{D2} + I_{D3} = 120 \text{mA}$ Tamb. = 25 ° C


Small Signal Gain(dB)

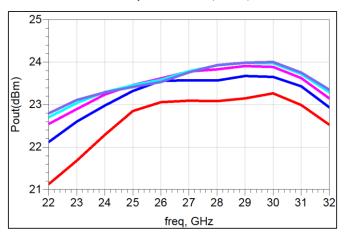

Noise Figure(dB)

Input Return Loss(dB)

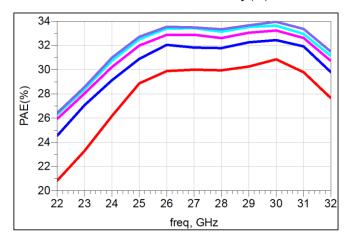
Output Return Loss(dB)

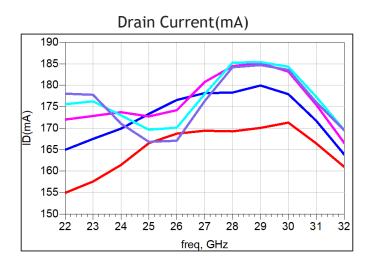
DATA SHEET PRELIMINARY VM174D

Typical Performance (Post-layout Simulations)

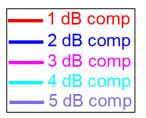

Large signal performances vs Gain Compression Level

Operating conditions unless otherwise noted:


- $V_D = V_{D1} = V_{D2} = V_{D3} = +4V$
- $V_G = V_{G1} = V_{G2} = V_{G3} = -0.5V$


• Tamb.= 25 ° C

Output Power(dBm)

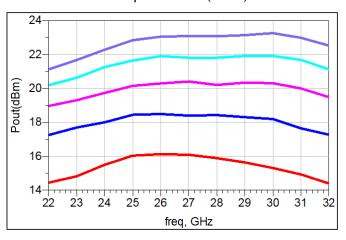


Power Added Efficiency(%)

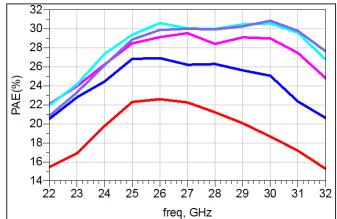
Gain Compression levels

DATA SHEET PRELIMINARY VM174D

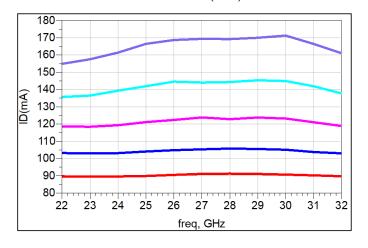
Typical Performance (Post-layout Simulations)


<u>Large signal performances vs Drain Voltage @ 1dB gain compression</u>

Simulation conditions unless otherwise note:


• $V_D = +2V$ to + 4V, $V_G = -0.5V$ typ.

• Tamb.= 25 ° C


Output Power(dBm)

Power Added Efficiency(%)

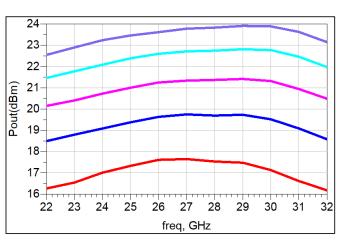
Drain Current(mA)

VD=4.000 VD=3.500 VD=3.000 VD=2.500 VD=2.000

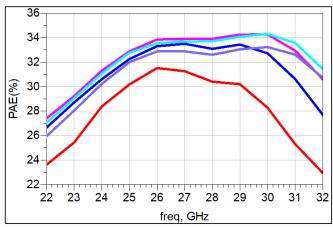
DATA SHEET PRELIMINARY

VM174D

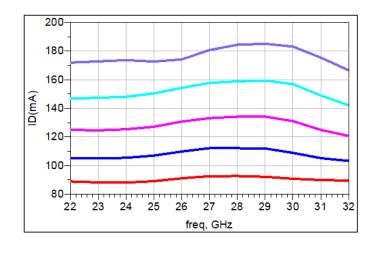
Typical Performance (Post-layout Simulations)


Large signal performances vs Drain Voltage @ 3dB gain compression

Simulation conditions unless otherwise note:


• $V_D = +2V$ to + 4V, $V_G = -0.5V$ typ.

• Tamb.= 25 ° C


Output Power(dBm)

Power Added Efficiency(%)

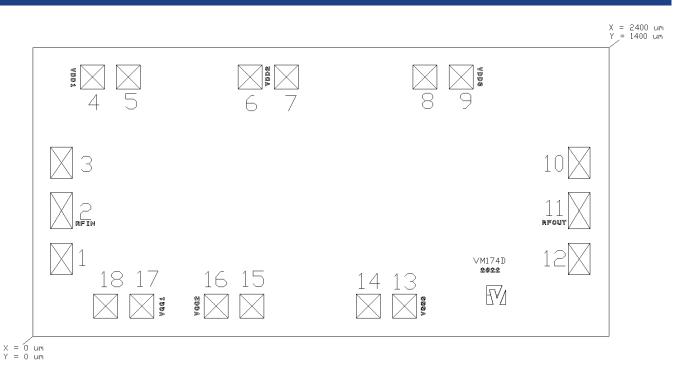
Drain Current(mA)

VD=4.000 VD=3.500 VD=3.000 VD=2.500 VD=2.000

DATA SHEET PRELIMINARY VM174D

Pin Description

Pin number	Name	Description	Electrical interface
2	RFIN	AC coupled, amplifier input access. Internally matched 50 Ohms.	RF IN
11	RFOUT	AC coupled amplifier output access. Internally matched 50 Ohms.	PF OUT
4, 6, 9	V_{D1} , V_{D2} , V_{D3}	1 st , 2 nd and 3 rd stage drain biasing access	V _{D1,2,3}
17, 16, 13	V_{G1} , V_{G2} , V_{G3}	1 st , 2 nd and 3 rd stage gate biasing access	V _{G1_2_3}
Die Bottom	GND	Die Bottom must be connected to RF and DC Ground	₽ GND



DATA SHEET

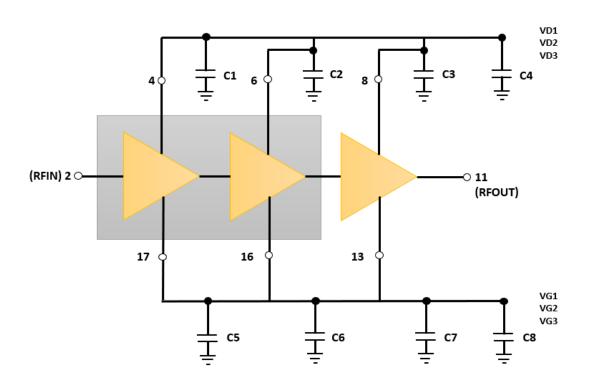
PRELIMINARY

VM174D

Die Layout

Die Pin Out

	Pad cen	ter	Size Description		Description		ze Description	
Pad Number —	×(µm)	y(µm)	μm×μm	Name	Value	Function		
1	119	322	90×130	Gnd				
2	119	522	90×150	RFin	RF in	RF Input		
3	119	722	90×130	Gnd		·		
4	247	1078	100×100	∨DD1		Drain Bias		
5	397	1078	100×100	GND				
6	905	1078	100×100	GND				
7	1055	1078	100×100	∨DD2		Drain Bias		
8	1633	1078	100×100	GND				
9	1783	1078	100×100	∨DD3		Drain Bias		
10	2276	722	90×130	GND				
11	2276	522	90×150	RFout	RF out			
12	2276	322	90×130	GND				
13	1547	126	100×100	VGG3		Gate Bias		
14	1397	126	100×100	GND				
15	913	126	100×100	GND				
16	763	126	100×100	VGG2		Gate Bias		
17	454	126	100×100	∨GG1		Gate Bias		
18	304	126	100×100	GND				



DATA SHEET PRELIVINARY VM174D

Application Circuit

- C1, C2, C3, C5, C6, C7 = 100 pF MIM Capacitor (close to the die)
- C4 & C8 = 1 µF

RFIN and RFOUT: 1 Gold Wire (25µm diameter Au)

Bias-up procedure

- 1. Set V_{G1} , V_{G2} and V_{G3} to -1V,
- 2. Set V_{D1} , V_{D2} and V_{D3} to +4V,
- 3. Increase V_{G1} , V_{G2} and V_{G3} to obtain I_D =120mA (V_G =-0.5V Typ.),
- 4. Turn ON RFIN

Bias-down procedure

- 1. Turn OFF RFIN
- 2. Decrease V_{G1} , V_{G2} and V_{G3} to -1V,
- 3. Decrease V_{D1} , V_{D2} and V_{D3} to 0V,
- 4. Set V_{G1} , V_{G2} and V_{G3} to 0V.

DATA SHEET PRELIMINARY VM174D

	lering	•	
	OFIDA	 O PINO	ation
Olu	erme	 101 III	ulion

Product Code	Definition
VM174D	24 to 30 GHz 27dB Medium Power Amplifier in Die form

Associated Material

Product Code	Definition
Packaged die	Contact factory
Die Evaluation Board (die EVB)	Contact factory
Packaged die Evaluation Board (packaged die EVB)	Contact factory
Mechanical files (DXF)	Contact factory
Measurents files (S2P)	Contact factory

Product Compliance Information

Solderability:

Use only AuSn (80/20) solder and limit expo-sure to temperature above 300° C during 3-4 minutes, maximum

ESD Sensitivy Rating:

Test : Human Body Model (HBM)
Standard : JEDEC Standard JESD22-A114

CAUTION! ESD-Sensitive device

RoHS-Compliance:

This part is compliant with EU 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C15H12Br402) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about Vectrawave:

.......

Vectrawave SA

5, rue Louis de Broglie 22 300 Lannion - FRANCE

www.vectrawave.com

Email sales: contact_sales@vectrawave.com

Tel sales:+33 (0)2 57 63 00 20

Represented by