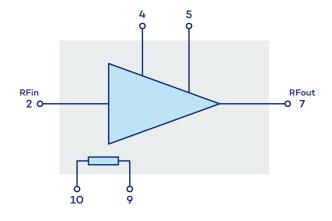
VM052D

General Description

The VM052D is a medium power amplifier designed on a 0.15µm pHEMT process. The device delivers more than +21dBm of output power at saturation regime, up to 40GHz, and more than +17dBm of output power at 1dB of gain compression, up to 34GHz.

It provides more than 12dB of linear gain from DC to 44GHz with a positive slope through 40GHz. This device can provide up to 11 dB gain up through 50GHz when operating with VD= 6V, with an excellent group delay.

The supply current is as low as 170mA when operated with VD= +6V.


Features

Wide band	DC - 44GHz
Flat group delay	
50ΩRF Single ended	RF input and output
DC coupled in, DC co	oupled out
P1dB	+17dBm DC to 34GHz
Psat	>+21dBm DC to 40GHz
Small signal gain	>12dB 2GHz to 40GHz
Power supply	170mA @ +6V
Chip size	2.29 x 1.28 x 0.1 (mm)

Applications

- Wide Band Amplifier
- Radar / ECM / ECCM
- Test and measurement
- Telecommunication format NRZ, PAM4, 56 GBPS
- Broadband / datalink communication

Pins Assignement & Functional Block Diagram

Function	Pin number
RF in	2
V _{G2}	4
V _{D_LOAD}	5
V _D & RF out	7
V _{G1_A}	9
V _{G1_B}	10

• Electrical Specifications (Test Under Probes)

Test conditions: unless otherwise noted

 \bullet T_{amb} = +25°C

• V_D = +6V

• ID = 170mA

• V_{G2} = +2.5V

Symbol	Parameter	Min	Тур	Max	Unit
F	Frequency range	DC		40	GHz
NF	Noise figure			4	dB
G	Small signal gain		12.5		dB
ΔG	Average gain positive slope		0.0375		dB
S11	Input return loss		-10	-7	dB
S22	Output return loss		-18		dB
P1dB	Output P1dB from DC to 34GHz	17	18		dBm
Psat	Saturated output power		21		dBm
lo	Drain current		170		mA

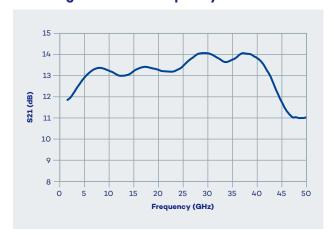
Environmental parameters

Symbol	Parameter	Min	Max	Unit
Тор	Operating temperature range	-40	+85	°C
Tstg	Storage temperature range	-55	+85	°C

Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
VD	Drain bias voltage		9	V
V _{G2}	Gate control input access for second stage	-1	V _D /2	V
Pin	RF input power		18	dBm
Pdiss (CW)	Continuous power dissipation		2	W
Tprocess	Temperature process max 20 seconds		+325	°C

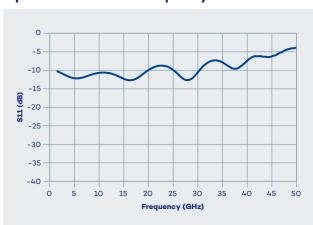
Operation of this device above any of these parameters may cause permanent damage.

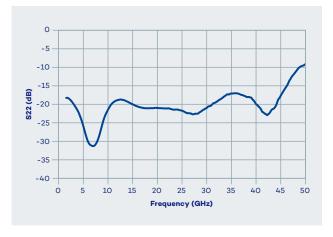


• Typical Performance (Test Under Probes)

Test conditions: unless otherwise noted

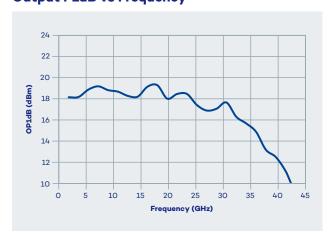
- T_{amb} = +25°C
- V_D = +6V
- ID = 170mA
- V_{G2} = +2.5V

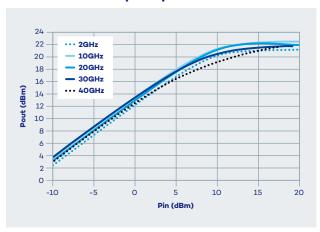

Small Signal Gain vs Frequency


Noise Figure vs Frequency

Input Return Loss vs Frequency

Output Return Loss vs Frequency


Group Delay vs Frequency



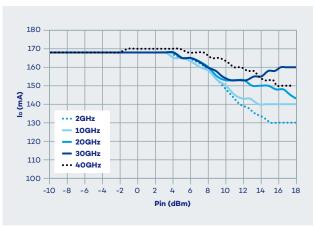
• Typical Performance (Test Under Probes)

Output P1dB vs Frequency

Pout vs Pin vs Frequency

Bias-up procedure

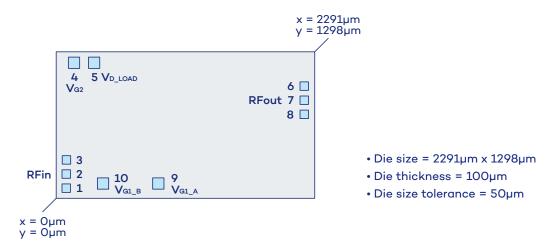
- 1. Apply V_D = +6V
- 2. Apply $V_{G2} = +2.5V$
- 3. Apply RF signal


Test conditions: unless otherwise noted

- \bullet T_{amb} = +25°C
- V_D = +6V
- ID = 170mA
- $V_{G2} = +2.5V$

Saturated Output Power vs Frequency

I_D vs Pin vs Frequency



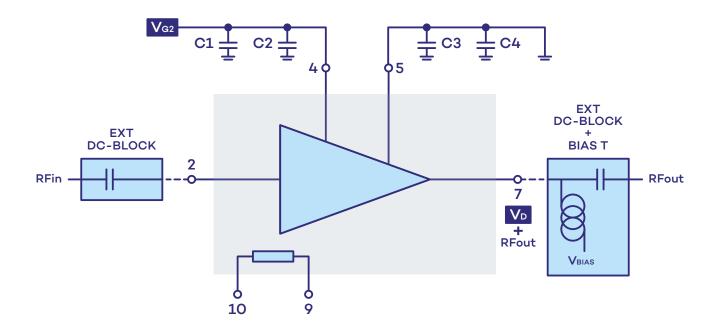
Bias-down procedure

- 1. Turn off RF signal
- 2. Reduce V_{G2} to OV
- 3. Reduce V_D to OV

Die Layout & Pin Out

Pad number	Y (µm)	enter Y (µm)	Size (µm x µm)	Name	Function
1	89	90	75 x 75	Gnd	
2	89	215	75 x 75	RFin	RF Input
3	91	340	75 x 75	Gnd	
4	158	1201	100 x 100	V _{G2}	Gate Bias
5	336	1201	100 x 100	V _{D_LOAD}	
6	2198	994	75 x 75	Gnd	
7	2198	869	75 x 75	RFout	RF Output
8	2198	744	75 x 75	Gnd	
9	905	131	100 x 100	V _{G1_A}	Gate Bias
10	415	131	100 x 100	V _{G1_B}	Gate Bias

• Die bottom must be connected to ground (RF and DC)



Access description

Pin number	Name	Description	Electrical interface
2	RF in	RF Amplifier input, this access is DC coupled and internally matched to 50Ω .	
4	V _{G2}	Gate control input access for second stage distributed amplifier structure. Apply +2.5V for nominal biasing conditions.	Vo & RF out
5	V_{D_LOAD}	Drain termination load decoupling access. For lower frequency applications, this access can be connected to a MIM 100pF or 1000pF capacitor, with a low inductance connection.	RFin
7	RF out	RF Amplifier output, this access is DC coupled and internally matched to 50Ω . It is also used to feed the drain current (Ib), by using a wide bandwidth external Bias-T structure.	Gnd Gnd
9	V _{G1_A}	Gate control input access for first stage distributed amplifier structure. Unused for nominal biasing conditions.	Vg1_A Vg1_B
10	V _{G1_B}	Gate control output access for first stage distributed amplifier structure. Unused for nominal biasing conditions.	0-1
Die Bottom	Gnd	Die must be connected to RF and DC Ground	Gnd P

Application circuit

- \cdot C1 and C4 = 1 μ F
- C2 and C3 = 1nF capacitors are MIM type and must be placed as close as possible to the die access.

Ordering information

Product Code	Parameter
VM052D	DC to 44GHz - 12dB - 21dBm Medium Power Amplifier

Associated Material

- Packaged die
- Die Evaluation Board (die EVB)
- Packaged die Evaluation Board (packaged die EVB)
- Mechanical files (DXF)
- Measurents files (S2P)

Product Compliance Information

Solderability

Use only AuSn (80/20) solder and limit exposure to temperature above 300 °C during 3-4 minutes, maximum.

ESD Sensitivy Rating

Test: Human Body Model (HBM) Std: JEDEC Standard JESD22-A114

RoHS-Compliance

This part is compliant with EU 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

Other attributes

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C15H12Br4O2) Free
- PFOS Free
- SVHC Free

Contact information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about Vectrawave.

vectrawave.com

+33 (0)2 57 63 00 20 sales@vectrawave.com

Vectrawave Device

5, rue de Louis de Broglie 22300 Lannion France Informations contained in this document, are considered to be accurate and reliable. However, no responsibility is assumed by Vectrawave for the consequence of its use, nor for any infringement of patents or other rights of third parties that may result from this use. Products are not authorized for use in life support devices without prior written approval from Vectrawave. Specifications are subject to changewithout notice

