

1 to 20GHz - 16dB - 27dBm Medium Power Amplifier

VM056D

General Description

The VM056D is a medium power amplifier designed on a 0.15µm pHEMT GaAs process. The device delivers more than +27dBm of output power at saturation regime, and provides more than 15dB of gain from 1 to 20GHz with less than 1dB of flatness with an excellent group delay between 6-18GHz in typical application.

Features

Wide band	1 – 20GHz		
Flat group delay			
50Ω RF Single ended RF input and output			
AC coupled in, DC co	oupled out		
High output PSAT	>+27dBm		
Small signal gain	16dB		
Power supply	290mA @ +8V		
Chip size	3 x 1.3 x 0.1 (mm)		

Applications

- Wide Band Low Noise Amplifier
- Radar / ECM / ECCM
- Test and measurement
- Broadband / datalink communication

Pins Assignement & Functional Block Diagram

Function	Pin number
RF in	3
V _{G2}	5
Vd_load	6
V _D & RF out	8
Vg	10
RA	1
RB	11
CA	12

• Electrical Specifications

Fest	conditions:	unless	otherwise	noted

- $\cdot T_{amb} = +25^{\circ}C$
- V_D = +8V V_{G2} = +3V
- IDD = 290mA @-1V < VG < 0V

Symbol	Parameter	Min	Тур	Max	Unit
F	Frequency range	1		20	GHz
G	Small signal gain	15	16		dB
ΔG	Small signal gain flatness		+/-1		dB
NF	Noise figure (@10GHz)			3.5	dB
ΤΟΙ	Simulated TOI		30		dBm
S11	Input return loss		-12		dB
S22	Output return loss		-12		dB
P1dB	Output P1dB		24		dBm
PSAT	Saturated output power		27		dBm
lo	Supply current		290		mA

• Environmental parameters

Symbol	Parameter	Min	Max	Unit
Тор	Operating temperature range	-40	+85	°C
Tstg	Storage temperature range	-55	+125	°C

Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
VD	Positive External DC bias voltage		9	V
VG1	Gate voltage first stage	-2.5		V
V _{G2}	Gate control input access for second stage	-1	V _D /2	V
Pin max	RF input power (In)		18	dBm
Pdiss (CW)	Continuous power dissipation (@85°)		3.3	W

Operation of this device above any of these parameters may cause permanent damage.

• Typical Performance (Test Under Probes)

Small Signal Gain vs Frequency

Input Return Loss vs Frequency

Output Return Loss vs Frequency

Test conditions: unless otherwise noted

• V_D = +8V • V_{G2} = +3V

• IDD = 290mA @-1V < VG < OV

Noise Figure vs Frequency

Saturated Output Power vs Frequency

Output P1dB vs Frequency

• Typical Performance (Test Under Probes)

Output Power vs Input Power for various Frequency

- Test conditions: unless otherwise noted $\cdot T_{amb} = +25^{\circ}C$ $\cdot I_{D} = 290mA$
- $V_D = +8V$ $V_{G2} = +3V$
- IDD = 290mA @-1V < VG < 0V

Drain Current vs Input Power for various Frequency

• Access description

Pin number	Name	Description	Electrical interface
3	RF in	RF Amplifier input, this access is AC coupled and internally matched to 50Ω .	
5	V _{G2}	Gate control input access for second stage distributed amplifier structure. Apply +3V for nominal biasing conditions.	VD & P RF out
6	Vd_load	Drain termination load decoupling access. For lower frequency appli-cations, this access can be connec-ted to a MIM 100pF or 1000pF capacitor, with a low inductance connection.	
8	RF out	RF Amplifier output, this access is DC coupled and internally matched to 50Ω . It is also used to feed the drain current (ID), by using a wide bandwidth external Bias-T structure.	
10	V _{G1}	Gate control input access for first stage distributed amplifier structure. Adjust VG1 to obtain the desired Drain current (~-0.2V for nominal biasing conditions)	
1	RA	Embedded resistor for low frequencies applications. Unused for nominal biasing conditions.	RA RB
11	RB	Embedded resistor for low frequencies applications. Unused for nominal biasing conditions.	0- <u>1</u> F0
Die Bottom	Gnd	Die must be connected to HF and DC Ground	

Die Layout & Pin Out

Pad number	Pad c X (µm)	e nter Y (µm)	Size (µm x µm)	Name	Function
1	99	118	75 x 75	RA	
2	99	250	75 x 75	Gnd	
3	99	400	75 x 75	RFin	RF Input
4	99	549	75 x 75	Gnd	
5	111	787	80 x 100	V _{G2}	Gate Bias
6	137	1202	150 x 100	VD_LOAD	
7	2922	1215	75 x 75	Gnd	
8	2922	1065	75 x 75	RFout	RF Output
9	2922	915	75 x 75	Gnd	
10	2909	294	100 x 150	Vgi	Gate Bias
11	292	118	75 x 75	RB	
12	371	400	75 x 75	CA	

• Die bottom must be connected to ground (RF and DC)

Bias-up procedure

- 1. Apply $V_{G1} = -1V$
- 2. Apply $V_D = +8V$
- 3. Apply V_{G2} = +3V
- 4. Increase V_{G1} to obtain I_D = 290mA (typically V_G = -0.2V)
- 5. Apply RF signal

• Always apply V_{G1} before applying V_{D}

• This stress may cause permanent damage on component.

• Bias-down procedure

- 1. Turn off RF signal
- 2. Decrease V_{G1} to -1V
- 3. Set V_{G2} to OV
- 4. Set V_D to OV
- 5. Set V_{G1} to OV

• Application circuit

C1 and C4 = 1µF
C2 and C3 = 1nF capacitors are MIM type and must be placed as close as possible to the die access.

Typical Application

Low Frequency Application

Ordering information

Product Code	Parameter
VM056D	1 to 20GHz - 16dB - 27dBm Medium Power Amplifier

• Associated Material

- Packaged die
- Die Evaluation Board (die EVB)
- Packaged die Evaluation Board (packaged die EVB)
- Mechanical files (DXF)
- Measurents files (S2P)

Product Compliance Information

Solderability

Use only AuSn (80/20) solder and limit exposure to temperature above 300 °C during 3-4 minutes, maximum.

ESD Sensitivy Rating

Test: Human Body Model (HBM) Std: JEDEC Standard JESD22-A114

RoHS-Compliance

This part is compliant with EU 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

Other attributes

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C15H12Br402) Free
- PFOS Free
- SVHC Free

Contact information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about Vectrawave.

vectrawave.com

+33 (0)2 57 63 00 20 sales@vectrawave.com

Vectrawave Device 5, rue de Louis de Broglie 22300 Lannion France Informations contained in this document, are considered to be accurate and reliable. However, no responsibility is assumed by Vectrawave for the consequence of its use, nor for any infringement of patents or other rights of third parties that may result from this use. Products are not authorized for use in life support devices without prior written approval from Vectrawave. Specifications are subject to changewithout notice

