

VM066D

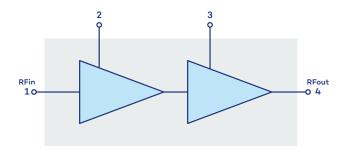
General Description

The VM066D is a 2 stages analog medium power MMIC amplifier operating in the frequency range 9.2 to 10.5GHz. The device is a cascaded 2 stages auto biased amplifier designed in 0.25µm pHEMT process.

The device is capable of more than +23dBm saturated output power, and provide more than 22dB of gain from 9.2 to 10.5GHz with less than 1dB of Gain variation. The Design has been optimized to provide high efficiency, supply current is as low as 120mA with VD = +8V, when delivering +23dBm output power.

Features

2 stages Medium Power pHEMT GaAs MMIC


Single Bias, Low power consumption < 1W

Single Blas, Low power	consumption < 1vv
Bandwidth	9.2 - 10.5GHz
Psat	+23dBm
P1dB	+22dBm
Linear Gain	22dB
50Ω, AC coupled RF in	put and output
Power supply	120mA @ +8V
Small size	2 x 1.5 x 0.1 (mm)

Applications

- X band Medium Power amplifier
- Radar / ECM / ECCM
- Test and measurement
- Broadband communication

Pins Assignement & Functional Block Diagram

Function	Pin number
RF in	1
V _{D1}	2
V _{D2}	3
RF out	4

Electrical Specifications

Test conditions: unless otherwise noted

• T_{amb} = +25°C

• $V_{DD} = V_{D1} = V_{D2} = +8V$

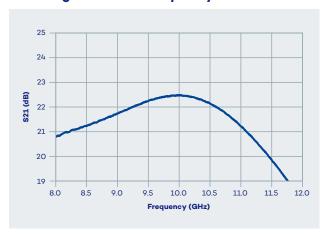
• IDD = ID1 + ID2 = 120mA

Symbol	Parameter	Min	Тур	Max	Unit
F	Frequency range @3dB	9.2		10.5	GHz
G	Gain		22		dB
ΔG	Gain flatness		+/-0.5		dB
NF	Noise figure @10GHz		7		dB
S11	Input return loss		-14		dB
S22	Output return loss		-14		dB
P1dB	Output power @1dB compression		22		dBm
Psat	Saturated output power		23		dBm
V _{DD}	Drain supply voltage		8		V
IDD	Supply current		120		mA

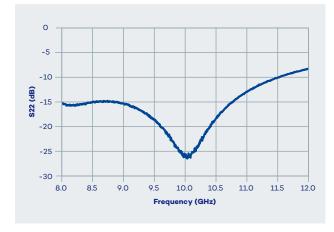
Environmental parameters

Symbol	Parameter	Min	Max	Unit
Tst	Storage temperature	-55	+150	°C
Тор	Operating temperature	-40	+85	°C

Absolute Maximum Ratings

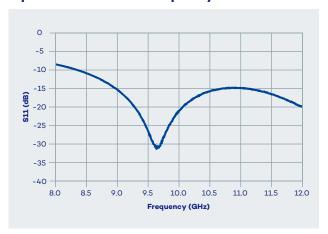

Symbol	Parameter	Min	Max	Unit
V _{DD}	Positive External DC bias voltage		8.5	V
Pin max	RF input power (In)		+7	dBm
Tj	Junction temperature		+150	°C
Tprocess	Temperature process max 10 seconds		+290	°C
Pcw	Continuous power dissipation (@ 85°C)		1.2	W

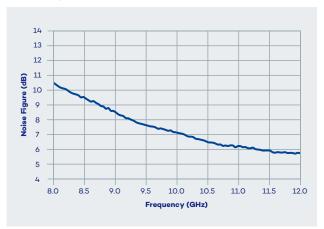
Care should be taken to avoid supply transient and over voltage. Over voltage above the maximum specified in absolute maximum rating section may cause permanent damage to the device.



• Typical Performance (Small signal / Test under Probe)

Small Signal Gain vs Frequency

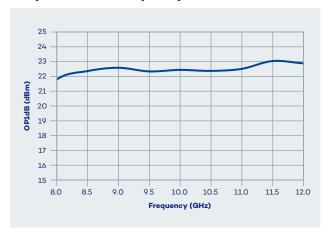

Output Return Loss vs Frequency


Test conditions: unless otherwise noted

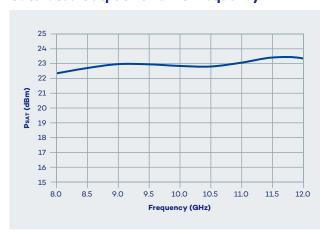
- \bullet T_{amb} = +25°C
- V_{DD} = +8V
- IDD = 120mA

Input Return Loss vs Frequency

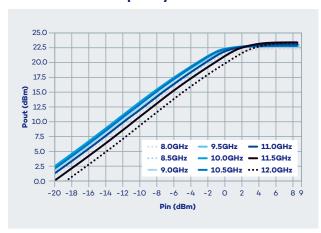
Noise Figure vs Frequency



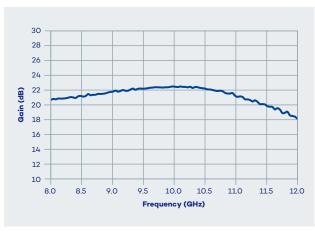
• Typical Performance (Large signal / Test under Probe)


Test conditions: unless otherwise noted

- $T_{amb} = +25$ °C
- V_{DD} = +8V
- IDD = 120mA

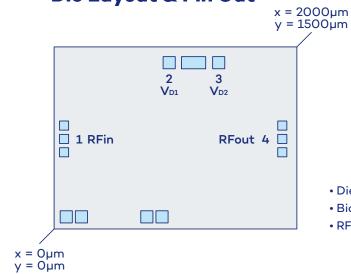

Output P1dB vs Frequency


Saturated Output Power vs Frequency


Pout vs Pin vs Frequency

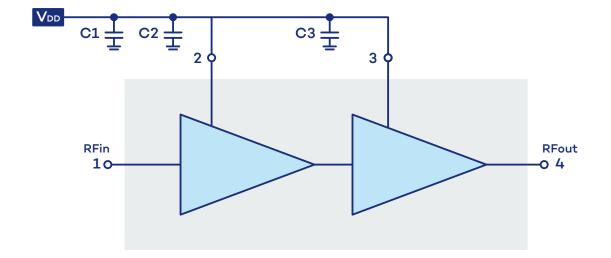
I vs Pin vs Frequency

Gain vs Frequency



PAE vs Pin

Die Layout & Pin Out


- Die size = 2000µm x 1500µm
- Bias pads dimensions (2,3) = 100 x 100 µm²
- RF in and RF out pad dimensions (1,4) =75 \times 75 μ m²

Pad number	Pad o	enter	Size (µm x µm)	Name	Function
Paa number	X (µm)	Y (µm)	Size (µm x µm)	Name	Function
1	82	742	75 x 75	RFin	RF Input
2	948	1370	100 x 100	V _{D1}	Drain Bias
3	1356	1370	100 x 100	V_{D2}	Drain Bias
4	1880	742	75 x 75	RFout	RF Output

• Die bottom must be connected to ground (RF and DC)

Application circuit

- C1 = 1µF
- C2 and C3 = 100pF capacitors are MIM type and must be placed as close as possible to the die access.

Ordering information

Product Code	Parameter
VM066D	9.2 to 10.5GHz - 22dB - 23dBm Medium Power Amplifier

Associated Material

- Packaged die
- Die Evaluation Board (die EVB)
- Packaged die Evaluation Board (packaged die EVB)
- Mechanical files (DXF)
- Measurents files (S2P)

Product Compliance Information

Solderability

Use only AuSn (80/20) solder and limit exposure to temperature above 300 °C during 3-4 minutes, maximum.

ESD Sensitivy Rating

Test: Human Body Model (HBM) Std: JEDEC Standard JESD22-A114

RoHS-Compliance

This part is compliant with EU 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

Other attributes

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C15H12Br4O2) Free
- PFOS Free
- SVHC Free

Contact information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about Vectrawave.

vectrawave.com

+33 (0)2 57 63 00 20 sales@vectrawave.com

Vectrawave Device

5, rue de Louis de Broglie 22300 Lannion France Informations contained in this document, are considered to be accurate and reliable. However, no responsibility is assumed by Vectrawave for the consequence of its use, nor for any infringement of patents or other rights of third parties that may result from this use. Products are not authorized for use in life support devices without prior written approval from Vectrawave. Specifications are subject to changewithout notice

